
Applied Deep Learning HW3-Report

B04901020 電機四 解正平

Q1：Baseline Performance (6%)

1. Describe your Policy Gradient & DQN model (2%)

Policy Gradient model

The model for policy gradient is to decide the action with state. I only use

simple linear layer to build the network, as shown in the above. Besides the

architecture, I calculate the discounted reward for each time stamp and give

zero accumulated rewards if encounter zero reward.

DQN model

The model for DQN is to predict the future rewards. I use convolution

network to extract features from the screen image and use linear layer to acquire

the Q value for each actions. Moreover, I use epsilon greedy as the exploration

algorithm, which the epsilon value is linear decayed and will not be zero until

exceeds a threshold step.

2. Plot the learning curve to show the performance of policy gradient (2%)

 We can see the average reward (last-10) for each episodes. The

performance is more unstable at first but goes higher and stable in the middle

of training. In nearly 1500 episodes, we can beat the baseline.

3. Plot the learning curve to show the performance of DQN (2%)

 DQN is at exploration phase in the beginning; however, it turns to learning

phase in approximately 1000 episodes. We can find the average reward (last

100) goes higher and oscillated while the rewards are clipped between (-1, 1)

to keep model more stable. In nearly 2000 episodes, we beat the baseline.

Q2：Experiment with DQN hyper-parameters (2%)

The environment I use is Assault Game. I choose gamma as the

experiment hyper-parameters due to its ability to consider future rewards and

affect the performance obviously. The results show that the higher of gamma,

the more emphasized for future. If we give small gamma value, we cannot

see future rewards and lead to a bad performance. Therefore, we need to

choose gamma = 0.99 as the paper described.

Q3：Improvements to Policy Gradient, DQN / Other RL method (4%)

1. Policy Gradient Improvements (2%)

I implement several improvements for policy gradient on LunarLander

Game, including reward normalization, variance reduction, and proximal

policy optimization (PPO).

Due to rewards may all positive, we can subtract a baseline (normalization)

to let rewards have negative value, which show a great improvement. With

baseline, the probability of the not sampled actions will not decrease sharply.

Besides above, we can set specific baseline to reduce the variance as followed.

However, this method has little influence on the normalized rewards.

𝑏 =
𝐸[𝑔(𝜏)2𝑟(𝜏)]

𝐸[𝑔(𝜏)2]

𝐽𝑝𝑝𝑜2
𝜃𝑘

(𝜃) ≈ ∑ min (
𝑃𝜃(𝑎𝑡|𝑠𝑡)

𝑃𝜃𝑘(𝑎𝑡|𝑠𝑡)
𝐴𝜃𝑘

(𝑠𝑡 , 𝑎𝑡), 𝑐𝑙𝑖𝑝(
𝑃𝜃(𝑎𝑡|𝑠𝑡)

𝑃𝜃𝑘(𝑎𝑡|𝑠𝑡)
, 1 − 𝜀, 1 + 𝜀)

(𝑠𝑡,𝑎𝑡)

𝐴𝜃𝑘
(𝑠𝑡 , 𝑎𝑡)

Moreover, the best method in this years is PPO, which had implement off-

policy algorithm with important sampling. PPO set KL divergence constraints

for 𝜃 cannot very different from 𝜃′. The objective function is showed above

and we can see it obtains the best performance.

2. DQN Improvements (2%)

I implement double and dueling DQN for the improvements on Assault

Game. It is a simple method only need to use another (online) network to

acquire target actions for double DQN while modify the network structure for

dueling DQN.

Double DQN is used to solved over-estimated problems. With two

networks (online and target), they can compensate for the other to avoid over-

estimated q value. Dueling DQN is used to acquire the state q value among

each actions and set a normalized constraint for different action q value. With

this method, we can update the action even if we don’t sample on it, which is

more efficient.

In my experiment, we set exploration phase with 1000 episodes. We can

find DQN has higher performance at first but double and dueling has the best

results afterwards. The basic DQN converge fast than improved DQN but

cannot enhance the received rewards. With double and dueling DQN, we can

still get higher scores when using small exploration steps.

Bonus (4%)：

1. Plot

From the above image, we can find that the performance with PPO is

higher than without PPO. The method with PPO suggests a better result with a

fast and effective improvement. However, the performance will go decayed

with more training steps. Besides, the variance of rewards (yellow part) shows

the unstable on reinforcement learning. It is difficult to train a good agent.

Double DQN Dueling DQN

without PPO

with PPO

2. Algorithm (Ref-code: https://github.com/higgsfield/RL-Adventure-2/blob/master/3.ppo.ipynb)

I implement simple A2C algorithm with proximal policy optimization

(PPO) and Generalized Advantage Estimation (GAE) on multi-processing

environment with value loss, action loss, and entropy loss. However, I didn’t

use the RNN network in my methods due to the bad performance in my

experiment. The method can consider the KL-divergence constraints and train

more iteration on one steps.

https://github.com/higgsfield/RL-Adventure-2/blob/master/3.ppo.ipynb

