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Q1：Baseline Performance (6%) 

1. Describe your Policy Gradient & DQN model (2%) 

Policy Gradient model 

 

The model for policy gradient is to decide the action with state. I only use 

simple linear layer to build the network, as shown in the above. Besides the 

architecture, I calculate the discounted reward for each time stamp and give 

zero accumulated rewards if encounter zero reward. 

DQN model 

 

The model for DQN is to predict the future rewards. I use convolution 

network to extract features from the screen image and use linear layer to acquire 

the Q value for each actions. Moreover, I use epsilon greedy as the exploration 

algorithm, which the epsilon value is linear decayed and will not be zero until 

exceeds a threshold step.  

2. Plot the learning curve to show the performance of policy gradient (2%) 

    We can see the average reward (last-10) for each episodes. The 

performance is more unstable at first but goes higher and stable in the middle 

of training. In nearly 1500 episodes, we can beat the baseline. 

  



3. Plot the learning curve to show the performance of DQN (2%) 

   DQN is at exploration phase in the beginning; however, it turns to learning 

phase in approximately 1000 episodes. We can find the average reward (last 

100) goes higher and oscillated while the rewards are clipped between (-1, 1) 

to keep model more stable. In nearly 2000 episodes, we beat the baseline. 

 

Q2：Experiment with DQN hyper-parameters (2%) 

 

The environment I use is Assault Game. I choose gamma as the 

experiment hyper-parameters due to its ability to consider future rewards and 

affect the performance obviously. The results show that the higher of gamma, 

the more emphasized for future. If we give small gamma value, we cannot 

see future rewards and lead to a bad performance. Therefore, we need to 

choose gamma = 0.99 as the paper described. 

 

 

 

 

 

 

 

 



Q3：Improvements to Policy Gradient, DQN / Other RL method (4%) 

1. Policy Gradient Improvements (2%) 

 

I implement several improvements for policy gradient on LunarLander 

Game, including reward normalization, variance reduction, and proximal 

policy optimization (PPO).  

Due to rewards may all positive, we can subtract a baseline (normalization) 

to let rewards have negative value, which show a great improvement. With 

baseline, the probability of the not sampled actions will not decrease sharply. 

Besides above, we can set specific baseline to reduce the variance as followed. 

However, this method has little influence on the normalized rewards.  
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Moreover, the best method in this years is PPO, which had implement off-

policy algorithm with important sampling. PPO set KL divergence constraints 

for 𝜃 cannot very different from 𝜃′. The objective function is showed above 

and we can see it obtains the best performance. 

2. DQN Improvements (2%) 

 

I implement double and dueling DQN for the improvements on Assault 

Game. It is a simple method only need to use another (online) network to 



acquire target actions for double DQN while modify the network structure for 

dueling DQN.  

 

 

Double DQN is used to solved over-estimated problems. With two 

networks (online and target), they can compensate for the other to avoid over-

estimated q value. Dueling DQN is used to acquire the state q value among 

each actions and set a normalized constraint for different action q value. With 

this method, we can update the action even if we don’t sample on it, which is 

more efficient. 

In my experiment, we set exploration phase with 1000 episodes. We can 

find DQN has higher performance at first but double and dueling has the best 

results afterwards. The basic DQN converge fast than improved DQN but 

cannot enhance the received rewards. With double and dueling DQN, we can 

still get higher scores when using small exploration steps. 

Bonus (4%)： 

1. Plot 

 

 

From the above image, we can find that the performance with PPO is 

higher than without PPO. The method with PPO suggests a better result with a 

fast and effective improvement. However, the performance will go decayed 

with more training steps. Besides, the variance of rewards (yellow part) shows 

the unstable on reinforcement learning. It is difficult to train a good agent.  
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2. Algorithm (Ref-code: https://github.com/higgsfield/RL-Adventure-2/blob/master/3.ppo.ipynb) 

I implement simple A2C algorithm with proximal policy optimization 

(PPO) and Generalized Advantage Estimation (GAE) on multi-processing 

environment with value loss, action loss, and entropy loss. However, I didn’t 

use the RNN network in my methods due to the bad performance in my 

experiment. The method can consider the KL-divergence constraints and train 

more iteration on one steps.  

https://github.com/higgsfield/RL-Adventure-2/blob/master/3.ppo.ipynb

