
Applied Deep Learning HW4-Report 

B04901020 電機四 解正平 

Q1：Explain the structure of your networks and loss terms in detail. 

1. Network structure 

I simply use ACGAN structure but some modifications to build my 

networks. We only need real images, one-hot condition and gaussian noise 

for the whole training procedure. 

 

- Generator： 

I first sample a normal gaussian noise (128) and concatenate with 

one-hot condition (6+4+3+2) as the input. After then, linear project the 

input to 512 * 4 * 4 size and use 5 ConvTranspose2d layer to upsample 

input into a real image 3 * 128 * 128. Before each layer input, I 

concatenate a condition map (15 * 2D map size) with the previous layer 

output. After each layer output, I add BatchNorm 2D and ReLU but Tanh 

for last layer.  

ConvTranspose2d 

Num layer Kernel size Stride Padding 

5 4 2 1 

 

 



- Discriminator： 

The inputs are an image (3x128x128) and a one-hot condition. I use 

5 Conv2d layer to project the image into a vector (512x4x4). After each 

layer output, I add BatchNorm 2D and LeakyReLU(0.2) but no batch 

normalization for the first layer. With an image representation, I 

implement a linear layer with representation and condition to show the 

adversarial score and a linear layer only with representation to show the 

classifier score between one-hot condition.  

Conv2d 

Num Layer Kernel Size Stride Padding 

5 4 2 1 

2. Loss design 

- Adversarial Loss：Wasserstein distance with gradient penalty 

- Auxiliary Loss：Binary cross entropy for one-hot condition 

I use WGAN-GP as my adversarial loss and the BCE as my auxiliary 

loss. The reason for using BCE is that we can simply view the condition 

as multi-label problems for each class and it is easier to implement. From 

the following image, we can find the discriminator has real loss going 

down and fake loss going up while the generator has a convergent 

auxiliary loss and going down adversarial loss. However, it seems to be 

unstable after 300 epochs, which shows that we cannot train GAN for a 

long time.   

3. Hyper parameters 

Adversarial Loss = Wasserstein distance + GP * 10 

Loss = Adversarial Loss + Auxiliary Loss * 20 

Learning Rate Lamda for GP Lamda for Aux Batch Size 

0.001 10 20 32 



Q2：Plot your training progress (10 pics). 

- Best FID：89.276 (epoch 300) 

- Range：epoch (50, 100, 150 … 500) 

- GIF：https://bit.ly/2JPKSVx (10 pics in GIF) 

  The last picture is in the following, which is generated from the model 

training last 500 epochs. We can find the model will have collapsed problems 

when training for a long time. Moreover, the picture from the model training 

on 50 epochs is good enough. 

 

 

 

 

 

 

 

 

https://bit.ly/2JPKSVx


Q3：Design at least 3 different experiments. 

1. Spectral Normalization 

a、 Settings 

  I remove the batch normalization layer from my original 

discriminator introduced in above section. After then, I add spectral 

normalization layer after each convolution and linear layer. The 

parameters are all the same with Q1.  

b、 Comparison/Observation on training procedure 

  From the following image, we can find use spectral normalization 

can lead to a more stable training procedure. The discriminator real 

loss goes lower while fake loss goes higher with a more real fake 

image. When it comes to generator, the adversarial loss goes down to 

enable images to fool discriminator and the auxiliary loss converges 

fast at the beginning.  

c、 Training Progress 

- Best FID：63.240 (epoch 450) 

- Range：epoch (50, 100, 150 … 450) 

- GIF：https://bit.ly/2I6SmQi 

  The last picture is generated from the model training last 450 

epochs. We can find that spectral normalization has the ability to 

reduce collapsed problems. It is difficult for human to find a similar 

face, showing the sample noise can have effective difference. 

 

 

 

https://bit.ly/2I6SmQi


2. Model Condition on Label 

a、 Settings 

  I have two settings about model condition on label in this section. 

First, I compare the generators, which I simply remove all the 

2D condition map but only use the input condition.  

 

For the other, I compare the discriminator with spectral 

normalization, which I don’t concatenate condition for the 

adversarial score but use projection layer on condition.  

b、 Comparison/Observation on training procedure 

- Generator (without concatenation) 

 

The loss without label concatenation is more unstable than with. 

Moreover, there is a strange phenomenon that the generator 

adversarial loss goes higher and the discriminator fake loss goes 

lower, which doesn’t meet my previous result. 



- Discriminator (projection) 

The concatenation with spectral normalization had showed 

stable loss during training while the projection had an unstable loss 

at the beginning. However, the result goes better when time passing. 

I think it is the benefits of the spectral normalization. 

c、 Training Progress 

- Generator (wo concatenation) 

- Best FID：131.046 (epoch 200) 

- Range：epoch (50, 100, 150 … 250) 

- GIF：https://bit.ly/2MfG11Q 

We can find that the unstable loss may lead to a bad quality 

of images. The last picture shows a lots noise just like a coming 

explosion on the image. Moreover, the FID score is worse than 

the generator with concatenation. 

- Discriminator (projection) 

    - Best FID：44.292 (epoch 800) 

- Range：epoch (50, 100, 150 … 800) 

- GIF：https://bit.ly/2W86aEh (Need download to view) 

We can find a strange picture at the beginning. However, it 

goes better after 150 epochs, which meets the loss results we had 

discussed in the above section.  

 

 

 

 

 

https://bit.ly/2MfG11Q
https://bit.ly/2W86aEh


3. Methods for Wasserstein Distance 

a、 Settings 

I use different tricks on Wasserstein Distance. First is the 

methods in section Q1 with gradient penalty for training. The other 

is the clipping methods and Wasserstein divergence methods. 

b、 Comparison/Observation on training procedure 

- Wasserstein Clipping 

The discriminator loss and generator adversarial loss is stable 

and can converge gradually. However, the generator auxiliary loss 

decreased little and almost stayed static. I think the generator loss is 

dominated by the adversarial rather than auxiliary.  

- Wasserstein Divergence 

 This method can train a stable procedure without gradient 

penalty and spectral normalization. We can find the discriminator 

fake loss decreased and real loss increased, which is a correct 

phenomenon. Nevertheless, it may turn unstable for a long training 

time. Fortunately, we didn’t see a loss explosion. 

 



c、 Training Progress 

- Wasserstein Clipping  

- Best FID：216.239 (epoch 400) 

- Range：epoch (50, 100, 150 … 500) 

- GIF：https://bit.ly/30Qz3U3 (Need download to view) 

This method cannot learn the condition well. The given 

class didn’t match the reasonable image. Although it can 

generate a face, a clear and conditioned image is hard to obtain. 

Perhaps this method need more parameters tuning. 

- Wasserstein Divergence 

- Best FID：55.371 (epoch 500) 

- Range：epoch (50, 100, 150 … 500) 

- GIF：https://bit.ly/2EHuCBz 

The image looks better when training for a long time. The 

results barely have the collapsed problem, which is a good 

method to train GAN. 

Bonus：Unsupervised Conditional Generation 

1. Model architecture (VAE) 

 

I use VAE for my unsupervised generation model. Due to the purpose 

of only considering image processing, I build the structure with all 

convolution layers. The latent code z is set based on the reparameterization 

trick during training and we can sample some gaussian noise for random 

generation on testing.  

 

 

 

https://bit.ly/30Qz3U3
https://bit.ly/2EHuCBz


2. Loss terms 

 

I use pixel-wised averaged mean square error (MSE) and KL 

divergence as my loss function. MSE is for the minimization of 

reconstruction error while KLD is for the latent space similar to normal 

distribution.  

From the above image, we can find the MSE loss is stable but KLD 

loss not. MSE loss can decrease gradually while KLD loss may arise some 

peaks. However, both of them have the trend for minimization. 

3. Experiment settings 

 

4. Results 

a、 Reconstruction (8) 

GIF：https://bit.ly/2VW9f5e 

 

b、 Random Generation (4x4) 

GIF：https://bit.ly/2I52IAi 

 

 

Learning Rate Beta1 Beta2 Batch Size 

0.0002 0.5 0.9 32 

https://bit.ly/2VW9f5e
https://bit.ly/2I52IAi


 

From the images reconstruction, we can find the quality is more 

and more better. However, there are still some details cannot maintain. 

From the images random generation, we can also find high quality 

face, which can be recognized easily. Since it is hard to learn the 

latent code to represent each attribute, the face may mix some color 

on hair, face, eyes, and glasses. 


