
Applied Deep Learning HW4-Report

B04901020 電機四 解正平

Q1：Explain the structure of your networks and loss terms in detail.

1. Network structure

I simply use ACGAN structure but some modifications to build my

networks. We only need real images, one-hot condition and gaussian noise

for the whole training procedure.

- Generator：

I first sample a normal gaussian noise (128) and concatenate with

one-hot condition (6+4+3+2) as the input. After then, linear project the

input to 512 * 4 * 4 size and use 5 ConvTranspose2d layer to upsample

input into a real image 3 * 128 * 128. Before each layer input, I

concatenate a condition map (15 * 2D map size) with the previous layer

output. After each layer output, I add BatchNorm 2D and ReLU but Tanh

for last layer.

ConvTranspose2d

Num layer Kernel size Stride Padding

5 4 2 1

- Discriminator：

The inputs are an image (3x128x128) and a one-hot condition. I use

5 Conv2d layer to project the image into a vector (512x4x4). After each

layer output, I add BatchNorm 2D and LeakyReLU(0.2) but no batch

normalization for the first layer. With an image representation, I

implement a linear layer with representation and condition to show the

adversarial score and a linear layer only with representation to show the

classifier score between one-hot condition.

Conv2d

Num Layer Kernel Size Stride Padding

5 4 2 1

2. Loss design

- Adversarial Loss：Wasserstein distance with gradient penalty

- Auxiliary Loss：Binary cross entropy for one-hot condition

I use WGAN-GP as my adversarial loss and the BCE as my auxiliary

loss. The reason for using BCE is that we can simply view the condition

as multi-label problems for each class and it is easier to implement. From

the following image, we can find the discriminator has real loss going

down and fake loss going up while the generator has a convergent

auxiliary loss and going down adversarial loss. However, it seems to be

unstable after 300 epochs, which shows that we cannot train GAN for a

long time.

3. Hyper parameters

Adversarial Loss = Wasserstein distance + GP * 10

Loss = Adversarial Loss + Auxiliary Loss * 20

Learning Rate Lamda for GP Lamda for Aux Batch Size

0.001 10 20 32

Q2：Plot your training progress (10 pics).

- Best FID：89.276 (epoch 300)

- Range：epoch (50, 100, 150 … 500)

- GIF：https://bit.ly/2JPKSVx (10 pics in GIF)

 The last picture is in the following, which is generated from the model

training last 500 epochs. We can find the model will have collapsed problems

when training for a long time. Moreover, the picture from the model training

on 50 epochs is good enough.

https://bit.ly/2JPKSVx

Q3：Design at least 3 different experiments.

1. Spectral Normalization

a、 Settings

 I remove the batch normalization layer from my original

discriminator introduced in above section. After then, I add spectral

normalization layer after each convolution and linear layer. The

parameters are all the same with Q1.

b、 Comparison/Observation on training procedure

 From the following image, we can find use spectral normalization

can lead to a more stable training procedure. The discriminator real

loss goes lower while fake loss goes higher with a more real fake

image. When it comes to generator, the adversarial loss goes down to

enable images to fool discriminator and the auxiliary loss converges

fast at the beginning.

c、 Training Progress

- Best FID：63.240 (epoch 450)

- Range：epoch (50, 100, 150 … 450)

- GIF：https://bit.ly/2I6SmQi

 The last picture is generated from the model training last 450

epochs. We can find that spectral normalization has the ability to

reduce collapsed problems. It is difficult for human to find a similar

face, showing the sample noise can have effective difference.

https://bit.ly/2I6SmQi

2. Model Condition on Label

a、 Settings

 I have two settings about model condition on label in this section.

First, I compare the generators, which I simply remove all the

2D condition map but only use the input condition.

For the other, I compare the discriminator with spectral

normalization, which I don’t concatenate condition for the

adversarial score but use projection layer on condition.

b、 Comparison/Observation on training procedure

- Generator (without concatenation)

The loss without label concatenation is more unstable than with.

Moreover, there is a strange phenomenon that the generator

adversarial loss goes higher and the discriminator fake loss goes

lower, which doesn’t meet my previous result.

- Discriminator (projection)

The concatenation with spectral normalization had showed

stable loss during training while the projection had an unstable loss

at the beginning. However, the result goes better when time passing.

I think it is the benefits of the spectral normalization.

c、 Training Progress

- Generator (wo concatenation)

- Best FID：131.046 (epoch 200)

- Range：epoch (50, 100, 150 … 250)

- GIF：https://bit.ly/2MfG11Q

We can find that the unstable loss may lead to a bad quality

of images. The last picture shows a lots noise just like a coming

explosion on the image. Moreover, the FID score is worse than

the generator with concatenation.

- Discriminator (projection)

 - Best FID：44.292 (epoch 800)

- Range：epoch (50, 100, 150 … 800)

- GIF：https://bit.ly/2W86aEh (Need download to view)

We can find a strange picture at the beginning. However, it

goes better after 150 epochs, which meets the loss results we had

discussed in the above section.

https://bit.ly/2MfG11Q
https://bit.ly/2W86aEh

3. Methods for Wasserstein Distance

a、 Settings

I use different tricks on Wasserstein Distance. First is the

methods in section Q1 with gradient penalty for training. The other

is the clipping methods and Wasserstein divergence methods.

b、 Comparison/Observation on training procedure

- Wasserstein Clipping

The discriminator loss and generator adversarial loss is stable

and can converge gradually. However, the generator auxiliary loss

decreased little and almost stayed static. I think the generator loss is

dominated by the adversarial rather than auxiliary.

- Wasserstein Divergence

 This method can train a stable procedure without gradient

penalty and spectral normalization. We can find the discriminator

fake loss decreased and real loss increased, which is a correct

phenomenon. Nevertheless, it may turn unstable for a long training

time. Fortunately, we didn’t see a loss explosion.

c、 Training Progress

- Wasserstein Clipping

- Best FID：216.239 (epoch 400)

- Range：epoch (50, 100, 150 … 500)

- GIF：https://bit.ly/30Qz3U3 (Need download to view)

This method cannot learn the condition well. The given

class didn’t match the reasonable image. Although it can

generate a face, a clear and conditioned image is hard to obtain.

Perhaps this method need more parameters tuning.

- Wasserstein Divergence

- Best FID：55.371 (epoch 500)

- Range：epoch (50, 100, 150 … 500)

- GIF：https://bit.ly/2EHuCBz

The image looks better when training for a long time. The

results barely have the collapsed problem, which is a good

method to train GAN.

Bonus：Unsupervised Conditional Generation

1. Model architecture (VAE)

I use VAE for my unsupervised generation model. Due to the purpose

of only considering image processing, I build the structure with all

convolution layers. The latent code z is set based on the reparameterization

trick during training and we can sample some gaussian noise for random

generation on testing.

https://bit.ly/30Qz3U3
https://bit.ly/2EHuCBz

2. Loss terms

I use pixel-wised averaged mean square error (MSE) and KL

divergence as my loss function. MSE is for the minimization of

reconstruction error while KLD is for the latent space similar to normal

distribution.

From the above image, we can find the MSE loss is stable but KLD

loss not. MSE loss can decrease gradually while KLD loss may arise some

peaks. However, both of them have the trend for minimization.

3. Experiment settings

4. Results

a、 Reconstruction (8)

GIF：https://bit.ly/2VW9f5e

b、 Random Generation (4x4)

GIF：https://bit.ly/2I52IAi

Learning Rate Beta1 Beta2 Batch Size

0.0002 0.5 0.9 32

https://bit.ly/2VW9f5e
https://bit.ly/2I52IAi

From the images reconstruction, we can find the quality is more

and more better. However, there are still some details cannot maintain.

From the images random generation, we can also find high quality

face, which can be recognized easily. Since it is hard to learn the

latent code to represent each attribute, the face may mix some color

on hair, face, eyes, and glasses.

