Graduate Institute of Electronics Engineering, NTU

Emotion Recognition : Galvanic Skin Response

Speaker: Cheng Ping Hsieh Advisor: Prof. An-Yeu Wu Date: 2018/11/02

Galvanic Skin Response (GSR)

Introduction

- Related to sweat gland activity
- Related to sympathetic nervous system
- Reflect emotional arousal
- Main components
 - Skin Conductance Response (0.5-2Hz)
 - Skin Conductance Level (0.05-0.5Hz)
- Raw Signal 0.1-10µs
- Application^{[1][2]}

Lie detection

Stress detection

00.30

01.00

Emotion Recognition

Database Introduction

- DEAP^[3] and AMIGOS^[4] database
- Objective
 - To study the personality, mood and affective response of people engaging with multimedia content
- Experiment
 - Emotion stimuli
 - Signal collection
 - Self-Assessment
- Compare
 - ✤ 22p. 40e. vs 40p.16e.
 - Physiological signals
 - Facial expression
 - Video duration

Previous Problems

- AMIGOS database with different video duration
 - Learning video information
 - Feature cannot relate to the data length
 - Valence performance 80% more than Arousal

Solution : cut backward data into the same length

fstdiff_nu		
562	568	544
323	342	311
717	732	723
483	491	467
721	751	729
354	393	371
646	666	655
453	406	404
866	935	893
379	378	358
364	406	396
507	546	502
630	657	600
385	384	374
548	621	585
463	445	437

- DEAP database with wrong GSR signal morphology
 - From official website
 - Negative GSR value
 - Extreme GSR value
 - 3s baseline remove

Solution : data extraction from original .bdf(raw) data

Graduate Institute of Electronics Engineering, NTU

Flow Chart

page5

Graduate Institute of Electronics Engineering, NTU

page6

Data Pre-process

- Remove GSR artifacts
- Conductance measurement (µs)
- ♦ Low-pass filter (2Hz) and downsample (128Hz \rightarrow 16Hz)

ACCESS IC LAB

Baseline Feature Extraction

Feature Extraction

- Time Domain^{[5][6]}
 - Difference and peak number
 - Statistics time feature

- Frequency Domain^{[11][12]}
 - Power spectral density
 - Statistics frequency feature

- Entropy Domain^{[7][8][9][10]}
 - Info., Ap. entropy
 - RCMSE, RCMPE

- Wavelet Domain^[13]
 - Different filter level
 - Statistics and entropy

Baseline Performance

✤ XGBoost^[14]

- Evaluation metrics = cross entropy loss
- Grid-search parameter on cross validation

DEAP/AMIGOS	Arousal	Valence	Arousal	Valence
F1-Score	60.84%	42.70%	57.24%	50.20%

GSR Decomposition

Decompose GSR into SCL and SCR will give us more info.

 Feature Extraction
 Signal Decomposition

 IPreportocess
 Extraction

- Reflect stimulus-specific responses
- Individual Independent
- 0.5 Hz to 2 Hz

page12

GSR Decomposition: Traditional Analysis(1/2)

- Detrend^[15]
- Window mean^[16]
- Difference^[17]

0.025

- Band-pass phasic (3)^[15]
- Low-pass tonic (2)^[18]

Signal Decomposition

GSR Decomposition: Traditional Analysis(2/2)

Signal Decomposition

page13

GSR Decomposition: Deconvolution Analysis(1/2)

Signal Decomposition

GSR Decomposition: Deconvolution Analysis(2/2)

- Optimization approach to EDA cvxEDA^[21]
 - Convex function for local minimize = global minimize

 \succ y = Mq + Bl + Cd + ε

- Convex assumptions
 - Sparse and non-negative SCR
 - Linear time invariant
 - Subject-specific IRF
 - Phasic superimpose to tonic

$$\succ$$
 [q, l, d] = argmax_{qld} P[q, l, d | y]

Independence of q, l, d

Signal Decomposition

$$\geq \frac{1}{2} \|Mq + Bl + Cd - y\|_2^2 + \alpha \|Aq\|_1 + \frac{\gamma}{2} \|l\|_2^2$$

Enhanced Feature Extraction

Feature Extraction

page16

Principal Component Analysis (PCA)

Feature selection &

Dimension reduction

- Feature number (2694) > Data number (880/640)
- Project R^D data onto a uncorrelated R^M space
- Unsupervised & linear dimension reduction
- Evaluate eigenvectors and eigenvalues
 - Maximize variance
 - Minimize reconstruction error

DEAP	AMIGOS	1.0
39	38	0.9
89	81	0.7
86	83	0.6
80	82	0.5
363	270	0.3
	DEAP 39 89 86 80 363	DEAP AMIGOS 39 38 89 81 86 83 80 82 363 270

Enhanced

Enhanced Performance

Arousal	DEAP		AMIGOS	
	Non-PCA	PCA	Non-PCA	PCA
Baseline	60.84%	61.97%	57.24%	56.76%
Traditional	62.93%	62.78%	60.23%	59.42%
CDA	59.77%	61.28%	58.48%	58.29%
cvxEDA	57.48%	63.57%	56.55%	58.31%
Fusion	60.79%	64.42%	56.78%	56.83%
DEAP Arousa F.p.win.IRf F.p.CVX.L T.p.df.me3df T.t.bdh.me E.p.bdm.r E.p.win.rm E.t.bdm.r F.p.bdl.rm T.t.bdh.ro F.p.win.V	Amigos Arousal Feature Importance T.p.CVX.2df.maxnum WM.t.bdh.InEn T.p.bdm.ro.negdf F.MF.minPSD F.t.CVX.meanF T.p.CVX.2df.minnum WH.t.lol.ApEn T.p.df.ro.neg2df F.p.df.VLF.min E.p.CVX.InEn			
0 5	10 15	20	0	10 20
				page18

Conclusion

- Arousal has high correlation with GSR signal
- Phasic activity has more information than tonic activity
- PCA can enhance performance from maximized variance
- Frequency domain features has higher feature importance

Future Work

- Implement fusion database
- Implement other GSR decomposition
 - Sparse coding features
- Use Image emotional stimuli experiment database

page20

Reference

[1]Critchley, Hugo D."Electrodermal responses: what happens in the brain." *The Neuroscientist*8.2(2002):132-142.

[2] Malathi, D., et al. "Electrodermal Activity Based Wearable Device for Drowsy Drivers." *Journal of Physics: Conference Series*. Vol. 1000. No. 1. IOP Publishing, 2018.

[3] Tripathi, Samarth, et al. "Using Deep and Convolutional Neural Networks for Accurate Emotion Classification on DEAP Dataset." *AAAI*. 2017.

[4] Miranda-Correa, Juan Abdon, et al. "AMIGOS: A Dataset for Affect, Personality and Mood Research on Individuals and Groups." *arXiv preprint arXiv:1702.02510* (2017).

[5]Ayata, Deger, Yusuf Yaslan, and Mustafa E. Kamasak. "Emotion Based Music Recommendation System Using Wearable Physiological Sensors." *IEEE Transactions on Consumer Electronics* (2018).

[6]Ayata, Doktora Deger, Yusuf Yaslan, and Mustafa Kamaşak. "Emotion Recognition via Galvanic Skin Response: Comparison of Machine Learning Algorithms and Feature Extraction Methods." *Istanbul University-Journal of Electrical & Electronics Engineering* 17.1 (2017): 3147-3156.

[7] Visnovcova, Zuzana, et al. "The complexity of electrodermal activity is altered in mental cognitive stressors." *Computers in biology and medicine* 79 (2016): 123-129.

[8] Tung, Kuan, et al. "Entropy-Assisted Multi-Modal Emotion Recognition Framework Based on Physiological Signals." *arXiv preprint arXiv:1809.08410* (2018).

[9] Wu, Shuen-De, et al. "Analysis of complex time series using refined composite multiscale entropy." *Physics Letters A*378.20 (2014): 1369-1374.

[10] Humeau-Heurtier, Anne, Chiu-Wen Wu, and Shuen-De Wu. "Refined composite multiscale permutation entropy to overcome multiscale permutation entropy length dependence." *IEEE Signal Processing Letters* 22.12 (2015): 2364-2367.

Reference

[11]Guo, Rui, et al. "Pervasive and unobtrusive emotion sensing for human mental health." *Pervasive Computing Technologies for Healthcare (PervasiveHealth), 2013 7th International Conference on.* IEEE, 2013.

[12]Posada-Quintero, Hugo F., et al. "Power spectral density analysis of electrodermal activity for sympathetic function assessment." *Annals of biomedical engineering* 44.10 (2016): 3124-3135.

[13]Sharma, Vivek, Neelam R. Prakash, and Parveen Kalra. "Audio-video emotional response mapping based upon Electrodermal Activity." *Biomedical Signal Processing and Control* 47 (2019): 324-333.

[14]https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/

[15] Setz, Cornelia, et al. "Discriminating stress from cognitive load using a wearable EDA device." *IEEE Transactions on information technology in biomedicine* 14.2 (2010): 410-417.

[16] https://imotions.com/blog/gsr/

[17] Kim, Kyung Hwan, Seok Won Bang, and Sang Ryong Kim. "Emotion recognition system using short-term monitoring of physiological signals." *Medical and biological engineering and computing* 42.3 (2004): 419-427.
[18] Kim, Jonghwa, and Elisabeth André. "Emotion recognition based on physiological changes in music listening." *IEEE transactions on pattern analysis and machine intelligence* 30.12 (2008): 2067-2083.

[19] Benedek, Mathias, and Christian Kaernbach. "A continuous measure of phasic electrodermal activity." *Journal of neuroscience methods* 190.1 (2010): 80-91.

[20] http://www.ledalab.de/download/Analysis%20of%20EDA%20data%20using%20Ledalab.pdf

[21] Greco, Alberto, et al. "cvxEDA: A convex optimization approach to electrodermal activity processing." *IEEE Transactions on Biomedical Engineering* 63.4 (2016): 797-804.