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Galvanic Skin Response (GSR)

 Introduction

 Related to sweat gland activity

 Related to sympathetic nervous system

 Reflect emotional arousal 

 Main components

 Skin Conductance Response (0.5-2Hz)

 Skin Conductance Level (0.05-0.5Hz)

 Raw Signal 0.1-10μs

 Application[1][2]

Emotion RecognitionLie detection
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 DEAP[3] and AMIGOS[4] database

 Objective

 To study the personality, mood and affective response of 

people engaging with multimedia content

 Experiment 

 Emotion stimuli

 Signal collection

 Self-Assessment

 Compare

 22p. 40e. vs 40p.16e.

 Physiological signals

 Facial expression

 Video duration

Database Introduction
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Previous Problems 

 AMIGOS database with different video duration

 Learning video information

 Feature cannot relate to the data length

 Valence performance 80% more than Arousal

 DEAP database with wrong GSR signal morphology

 From official website

 Negative GSR value

 Extreme GSR value

 3s baseline remove

Solution：cut backward data into the same length

Solution：data extraction from original .bdf(raw) data
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Data Pre-process

 Remove GSR artifacts

 Conductance measurement (μs)

 Low-pass filter (2Hz) and downsample (128Hz→16Hz)
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Baseline Feature Extraction

 Time Domain[5][6]

 Difference and peak number

 Statistics time feature

 Frequency Domain[11][12]

 Power spectral density

 Statistics frequency feature

 Entropy Domain[7][8][9][10]

 Info., Ap. entropy

 RCMSE, RCMPE

 Wavelet Domain[13]

 Different filter level

 Statistics and entropy
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 XGBoost[14]

 Evaluation metrics = cross entropy loss

 Grid-search parameter on cross validation

Baseline Performance

DEAP/AMIGOS Arousal Valence Arousal Valence

F1-Score 60.84% 42.70% 57.24% 50.20%
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GSR Decomposition

Skin Conductance Level (SCL) Skin Conductance Response (SCR)

 Slow varying tonic activity

 Individual Dependent

 ≤ 0.5 Hz

 Fast varying phasic activity

 Reflect stimulus-specific responses

 Individual Independent

 0.5 Hz to 2 Hz

EDA SCL SCR

Noise

+

Artifacts

Decompose GSR into SCL and SCR will give us more info.
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Skin Conductance Level (SCL) Skin Conductance Response (SCR)

 Slow varying tonic activity

 Individual Dependent

 ≤ 0.5 Hz

 Fast varying phasic activity

 Reflect stimulus-specific responses

 Individual Independent

 0.5 Hz to 2 Hz
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 Detrend[15]

 Window mean[16]

 Difference[17]

 Band-pass phasic (3)[15]

 Low-pass tonic (2)[18]

GSR Decomposition: Traditional Analysis(1/2)

Detrend

Window mean Difference
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GSR Decomposition: Traditional Analysis(2/2)

 Band-pass phasic

 0.5-2 Hz

 0.3-2 Hz

 0.1-2 Hz

 Low-pass tonic

 0.2 Hz

 0.08 Hz
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GSR Decomposition: Deconvolution Analysis(1/2)

 Continuous Decomposition Analysis[19][20]

 GSR = SMNA⨂IRF

 SMNA = Drivertonic + Driverphasic

 IRF(t) = Bateman Function

 Reconstruct loss function

 Reverberation 

 Undershoot

undershoot
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 Optimization approach to EDA – cvxEDA[21]

 Convex function for local minimize = global minimize

 𝑦 = 𝑀𝑞 + 𝐵𝑙 + 𝐶𝑑 + 𝜀

 Convex assumptions 

 Sparse and non-negative SCR

 Linear time invariant

 Subject-specific IRF

 Phasic superimpose to tonic

 Convex loss function

 𝑞, 𝑙, 𝑑 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑞𝑙𝑑 𝑃 𝑞, 𝑙, 𝑑 𝑦]

 Independence of q, l, d


1

2
𝑀𝑞 + 𝐵𝑙 + 𝐶𝑑 − 𝑦 2

2 + 𝛼 𝐴𝑞 1 +
𝛾

2
𝑙 2

2

GSR Decomposition: Deconvolution Analysis(2/2)
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 Time Domain

 Difference and peak number

 Statistics time

 Frequency Domain

 Power spectral density

 Statistics frequency

 SCR Domain

 Peak amplitude

 Peak magnitude

 Rising time

 Recover time

Enhanced Feature Extraction

 Entropy Domain

 Info., Ap. entropy

 RCMSE, RCMPE

 Wavelet Domain

 Different filter level

 Statistics and entropy

Phasic Tonic
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Principal Component Analysis (PCA)

 Feature number (2694) > Data number (880/640) 

 Project 𝑅𝐷data onto a uncorrelated 𝑅𝑀 space

 Unsupervised & linear dimension reduction 

 Evaluate eigenvectors and eigenvalues

 Maximize variance 

 Minimize reconstruction error

Variance = 0.99 DEAP AMIGOS

Baseline (134) 39 38

Tradition (256) 89 81

CDA (256) 86 83

cvxEDA (256) 80 82

Fusion (2694) 363 270
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Enhanced Performance

Arousal DEAP AMIGOS

Non-PCA PCA Non-PCA PCA

Baseline 60.84% 61.97% 57.24% 56.76%

Traditional 62.93% 62.78% 60.23% 59.42%

CDA 59.77% 61.28% 58.48% 58.29%

cvxEDA 57.48% 63.57% 56.55% 58.31%

Fusion 60.79% 64.42% 56.78% 56.83%
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Conclusion

 Arousal has high correlation with GSR signal

 Phasic activity has more information than tonic activity

 PCA can enhance performance from maximized variance

 Frequency domain features has higher feature importance

Future Work

 Implement fusion database  

 Implement other GSR decomposition

 Sparse coding features

 Use Image emotional stimuli experiment database
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