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Galvanic Skin Response (GSR)

 Introduction

 Related to sweat gland activity

 Related to sympathetic nervous system

 Reflect emotional arousal 

 Main components

 Skin Conductance Response (0.5-2Hz)

 Skin Conductance Level (0.05-0.5Hz)

 Raw Signal 0.1-10μs

 Application[1][2]

Emotion RecognitionLie detection
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 DEAP[3] and AMIGOS[4] database

 Objective

 To study the personality, mood and affective response of 

people engaging with multimedia content

 Experiment 

 Emotion stimuli

 Signal collection

 Self-Assessment

 Compare

 22p. 40e. vs 40p.16e.

 Physiological signals

 Facial expression

 Video duration

Database Introduction
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Previous Problems 

 AMIGOS database with different video duration

 Learning video information

 Feature cannot relate to the data length

 Valence performance 80% more than Arousal

 DEAP database with wrong GSR signal morphology

 From official website

 Negative GSR value

 Extreme GSR value

 3s baseline remove

Solution：cut backward data into the same length

Solution：data extraction from original .bdf(raw) data



ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

page5

Flow Chart

Raw data

Preprocess

Feature 

Extraction

Baseline Model

Signal

Decomposition

Feature selection & 

Dimension reduction

Enhanced

Model



ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

page6

Raw data

Electrodermal

Activity (EDA)

Preprocess

Denoising

Filtering

Downsampling

Decomposition

Detrend

Window-average

Difference

Band-pass

Low-pass

Feat. Extraction

Time

Frequency

Wavelet

Entropy

Classification

GaussianNB

SVM

XGBoost

Arousal

Valence



ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

page7

Data Pre-process

 Remove GSR artifacts

 Conductance measurement (μs)

 Low-pass filter (2Hz) and downsample (128Hz→16Hz)
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Baseline Feature Extraction

 Time Domain[5][6]

 Difference and peak number

 Statistics time feature

 Frequency Domain[11][12]

 Power spectral density

 Statistics frequency feature

 Entropy Domain[7][8][9][10]

 Info., Ap. entropy

 RCMSE, RCMPE

 Wavelet Domain[13]

 Different filter level

 Statistics and entropy
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 XGBoost[14]

 Evaluation metrics = cross entropy loss

 Grid-search parameter on cross validation

Baseline Performance

DEAP/AMIGOS Arousal Valence Arousal Valence

F1-Score 60.84% 42.70% 57.24% 50.20%
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GSR Decomposition

Skin Conductance Level (SCL) Skin Conductance Response (SCR)

 Slow varying tonic activity

 Individual Dependent

 ≤ 0.5 Hz

 Fast varying phasic activity

 Reflect stimulus-specific responses

 Individual Independent

 0.5 Hz to 2 Hz

EDA SCL SCR

Noise

+

Artifacts

Decompose GSR into SCL and SCR will give us more info.
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 Detrend[15]

 Window mean[16]

 Difference[17]

 Band-pass phasic (3)[15]

 Low-pass tonic (2)[18]

GSR Decomposition: Traditional Analysis(1/2)

Detrend

Window mean Difference
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GSR Decomposition: Traditional Analysis(2/2)

 Band-pass phasic

 0.5-2 Hz

 0.3-2 Hz

 0.1-2 Hz

 Low-pass tonic

 0.2 Hz

 0.08 Hz
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GSR Decomposition: Deconvolution Analysis(1/2)

 Continuous Decomposition Analysis[19][20]

 GSR = SMNA⨂IRF

 SMNA = Drivertonic + Driverphasic

 IRF(t) = Bateman Function

 Reconstruct loss function

 Reverberation 

 Undershoot

undershoot
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 Optimization approach to EDA – cvxEDA[21]

 Convex function for local minimize = global minimize

 𝑦 = 𝑀𝑞 + 𝐵𝑙 + 𝐶𝑑 + 𝜀

 Convex assumptions 

 Sparse and non-negative SCR

 Linear time invariant

 Subject-specific IRF

 Phasic superimpose to tonic

 Convex loss function

 𝑞, 𝑙, 𝑑 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑞𝑙𝑑 𝑃 𝑞, 𝑙, 𝑑 𝑦]

 Independence of q, l, d


1

2
𝑀𝑞 + 𝐵𝑙 + 𝐶𝑑 − 𝑦 2

2 + 𝛼 𝐴𝑞 1 +
𝛾

2
𝑙 2

2

GSR Decomposition: Deconvolution Analysis(2/2)
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 Time Domain

 Difference and peak number

 Statistics time

 Frequency Domain

 Power spectral density

 Statistics frequency

 SCR Domain

 Peak amplitude

 Peak magnitude

 Rising time

 Recover time

Enhanced Feature Extraction

 Entropy Domain

 Info., Ap. entropy

 RCMSE, RCMPE

 Wavelet Domain

 Different filter level

 Statistics and entropy

Phasic Tonic
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Principal Component Analysis (PCA)

 Feature number (2694) > Data number (880/640) 

 Project 𝑅𝐷data onto a uncorrelated 𝑅𝑀 space

 Unsupervised & linear dimension reduction 

 Evaluate eigenvectors and eigenvalues

 Maximize variance 

 Minimize reconstruction error

Variance = 0.99 DEAP AMIGOS

Baseline (134) 39 38

Tradition (256) 89 81

CDA (256) 86 83

cvxEDA (256) 80 82

Fusion (2694) 363 270
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Enhanced Performance

Arousal DEAP AMIGOS

Non-PCA PCA Non-PCA PCA

Baseline 60.84% 61.97% 57.24% 56.76%

Traditional 62.93% 62.78% 60.23% 59.42%

CDA 59.77% 61.28% 58.48% 58.29%

cvxEDA 57.48% 63.57% 56.55% 58.31%

Fusion 60.79% 64.42% 56.78% 56.83%
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Conclusion

 Arousal has high correlation with GSR signal

 Phasic activity has more information than tonic activity

 PCA can enhance performance from maximized variance

 Frequency domain features has higher feature importance

Future Work

 Implement fusion database  

 Implement other GSR decomposition

 Sparse coding features

 Use Image emotional stimuli experiment database
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