

DSNP
Final Project Report

電機三

B04901020 解正平

Email：b0491020@ntu.edu.tw

Phone：0932329263

mailto:b0491020@ntu.edu.tw

I. Data Structure

II. Algorithm

III. Experiments

IV. Discussion

I. Data Structure

1. CirGate

I create _faninID to record all gates fanin ID for readparse.

More specialy, the CirgateV fanin and fanout is a class that

can contain the invertor information. The fecpos is used to

record the gate’s fecpairs and the _ref2, _globalRef2 can

be found in Cirfraig.cpp using for traverse between group

gates.

2. CirMgr

_pilsit and _polist are created when reading files, it won’t change

until read files replace. _totallist is an arrary to store every gates

information, using its ID to place the gate into the arrary position.

dfslist is an list that run dfstravel from PO without the floating gates

and undefined gates. The booldfs vector is use for Cirsweep while

_FecGrps is to record the sorted fecpairs using for Cirsimulation and

Cirfraig. M I L O A are the parameters from reading files A would

change while merging and sweeping.

3. CirSweep

I run two for to deal with sweep. The first loop eliminates the floating

gates and undef gates while the second loop eliminates the fanouts of

the gates with floating gates or undef gates. Pay attention acces the

Cirgate pointer from causing core dumped.

4. CirOptimize

Distinguish the optimize problems in three cases for fanin0 is 0 or 1,

fanin1 is 0 or 1 and two fanin is the same but with invertor or not. And

there are two method to deal with cases, one is merged with the fanin

gate and the other is merged with the const0 gate. I would introduce in

Algorithm part more detailed. In the last steps we need to recreate the

dfslist due to the merges and changes in gates.

5. CirStrash

I try many methods to create a hashkey in order to do strash more

efficiently；finally, I choose the multiplication of two fanins.to form the

hashkey. In strash function, there are two results. If we can find it in the

hashmap, we merge the gate with the gate in the hashmap. If can’t, we

insert a new hashnode into the hashmap. In the last steps we need to

recreate the dfslist due to the merges and changes in gates.

6. CirSimulation

I create many functions for simulation. First in order to use hashmap, I

create simkey that the if simValue is the same or invert they may in the

same buckets because it may become fecpairs or Ifecpairs. About the

functions, there are read part, create part and set part. We may read

input pattern or random generate first and then set all gates’ simValue

according to dfslist steps by steps.

Next, we create fecpairs using hashmap and the new pairs need to

update to the _Fecgrps. In hash, if we can find the same simvalue then

add to the buckets while can’t find we insert a new pair into hash. We

use iterator to push back the hash into groups, and sort the gates at the

same time. Finally we create all the groups, we sort the groups in

ascending.

7. Cirfraig

I create many function to do different things. First we need to initialize

the satsolver and every gate’ varvalue and then we runfraig in special

steps with two gates in the same fecgroup we satsolve the two gates if

true we merge if false we store the CEX for simulate and recreate the

dfslist. We always run the dfslist from the beginning after merging. If we

run all the dfslist we stop fraig and clear the _Fecgrps.

For(dfslist)

If(gate’s pair is 0)

If(fanin is const 0)

 gate merged with const0

else If(satsolve is 0)

gate merged with const0

Else

 StoreCEX

Else

For(fecgroup)

If(satsolve is 0)

Groupgate merged with gate

Else

 StoreCEX

II. Algorithm

1. CirSweep

I create a booldfs with size the same the totallist to record whether the

gate is in the dfslist when doing dfstraversal. And then we just run the

totallist with booldfs steps by steps and eliminates the gates which need

to be swept. The time complexity is approximately 𝑂(𝑛).

2. CirOptimize

it is a remove fanin function two for loop to assure the fanin don’t have

the fanout to this gate.

It is a function to merge the fain gate to this gate using while a gate fanin

is 1 or the same no invert fanin. I use two for loop to do two things. One is

fanin gate push back new gate in its fanout; another is fanout gate

reconnect its fanin gate to the fanin gate. Because it is so complexed, I

set a function to merge gate. It is the same when merging with const0

gate. The optimize is just run all the gates in dfslist, so I think the time

complexity is approximately 𝑂(𝑛).

3. CirStrash

Check all the dfslist gates in hashmap, if in the map we merge the gate; if

not, we insert to the map. At the end, we recreate a new dfslist. The time

complexity is approximately 𝑂(𝑛).

4. CirSimulation

I use 64 bit to store pattern simulate in parallel due to faster than 32bit.

When random simulation, I use PI numbers to set the max fail, stalling

the simulation. I create the random pattern with rnGen() and I find if the

pattern is random enough, it is helpful for the performance in simulation.

Most important, I create to methods to calculate fail; one is when the

oldGrpsize the same as the currentGrpsize, the other is the change

velocicy which I use usage function to record time and set a standard to

generate a fail. The above is about the pattern algorithm.

About checking whether it is the same in the fecgroup, I use the

hashmap. Due to the group will create the max groups number is the gate

size, I create a hashmap that buckets number the same gate size. At the

end of the simulations I sort the fecgrps and set the fecpos number to

every gate.

5. Cirfraig

I run the steps according to the dfslist, due to I think the pair gate will

close to the gate. When checking whether the gate is need to be solved

or merged, I set two flags to record, solveflag and mergeflag. First I run

the dfslist only for AIG gate, when the gate is in the zero group it didn’t

need to check the solveflag. However in other gates, when the gate see

the gate first, we do solve and set the solvegate so that next time we

cannot access the gate. We won’t solve the gates again. In other words,

If we need to merge the gate, we need to set the specified gate ergeflag

to insure no gate will merge it and no access to it .

 Group 0 gates other gates

If(fanin has mergeflag) Else

gate merged with const0 For(fecgroup)

else If(satsolve is 0) If(Groupgate no mergeflag and no solveflag)

gate merged with const0 If(satsolve is 0)

gate set mergeflag Groupgate merged with gate

Else Groupgate set mergeflag

StoreCEX Else

 StoreCEX

 gate set solveflag

 Besides the flags I set, I will do simulation while CEX number==64, to set

the difference between FecGroup gates, it may decrease the grps size and

run the fraig more efficient. Also, I set a recycle can to accumulate the merge

gates pair when some time I will merge them all. It is a method not always

merge the gates due to the less performace while if we merge at the end of

the fraig it may waste time to run dfslist. As a result, it is important to figure out

a tradeoff to have the high performance.

I merge all the functions and objects above. We can find they do the same

things except for the simulation. And the number 500 was from experiment, I

will introduce later.

III. Experiments
1. Compare with ref

Sim.09 Ref fraig My fraig

 Time RAM TIME RAM

Ciropt 0 0.7578M 0 2.168M

cirstrash 0 1.117M 0 2.168M

Sim.13 Ref fraig My fraig
 time RAM time RAM

Cirsim –r 10.95 17.72 8.45 28.18

Cirfraig 101.6 46.77 88.72 48.5

2. Calculate the optimization of maxfail

Maxfail= size_t(pow(I,0.5)*15)

3. Calculate the optimization of merge time

if(res.size()>500)

4. Difference of the simulation methods

Number > Velocity

Results

In the above I discover that the ref use less memory but in doing

fraig and doing simulation my fraig has higher performance.

When calculating the parameters which to set, I use many sim.aag

files to decide. And discover that this case has a higher performace,

it is a great tradeoff, not more and more bigger or not more and more

smaller it has a optimization.

According to considering the time or not, I find the performance is

nearly. However there will be a more and more parameters to decide.

So I don’t choose the velocity in my fraig

Sim.13 Ref fraig My fraig
 pattern grps time ram pattern grps time ram

Cirsim –r 135816 3366 11.2 17.59 49664 3468 8.79 28.71

Cirsim –r 95488 3260 7.05 17.58 24768 3344 3.71 28.71

Cirsim -r 90624 3186 6.29 17.58 22848 3246 3.45 28.71

IV. Discussion

1. doing fraig often have a infinite loop

The problem have many cases. Most of the common one is that

there are some gates in the dfslist but not in the _FecGrps. They

may affect we redo solve in the same gates. Maybe check the gates

In small files and print their information in gdb is helpful.

2. core dumped

I always encounter this problem due to my less use of the assert. It

can help you whether the pointer is exist. The most common case is

that the gate is merged but you still use it in _FecGrps, it is due to

that the _FecGrps have to realtime with the dfslist and vice versa.

Remember set assert !

3. double free

My first version is when the gate will be merge, I eliminate it from its

group. But I may face the double free because re merge the same

gate. As a result, I use two flags rather than just erase it from Grps; I

do erase and merge at the same time to ensure preventing from the

problems.

4. performance

When doing simulation, I firstly use update to change the grp in

hashmap but it may seem too waste time. Another problem, is that I

use erase the grp we implement in the hashmap. It is too slow to

simulate. So I change to recreate the _FecGrps which has a high

performance.

When doing fraig, I decrease the SATsolve frequency by checking

zero groups. If the group’s fanin is const0, we don’t need to prove

the gates but just merged with const0 gate. I think because there are

so much gates in group 0, so it may be useful.

5. improvement

maybe the fraig can improve by the steps we do. Because the

_FecGrps is sorted not just the dfslist sequence, we may pay more

time on the SATsolve, so it is a method to do my work.

