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ABSTRACT
We compare two schema, the Multilabel-Binary Vectors (MBV) au-
toencoder [4] and the Vector Quantized Variational Autoencoder
(VQVAE) [6], in which discrete representations of subword units
could be discovered from speech without any parallel data, includ-
ing text label, phoneme label and alignment. Both models apply
autoencoding mechanism but with different revisions to extracting
latent features from speech while ensuring discreteness. The effi-
ciency of each encoding is evaluated according to the bitrate, while
the quality can be checked by human by inspecting the generated
spectrogram and listening the generated audios. Monophonic audio
generation and interpolation of the MBV encoding is performed
to further study the characteristic of the latent distribution. By
combining the two methods, we aim to utilize their strengths and
achieve a better performance in the ZeroSpeech 2019 Challenge, in
terms of either bitrate or quality.
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1 INTRODUCTION
Recently, text to speech (TTS) has emerged due to the observation
of user-interface application and has gradually gained more and
more popularity. The underlying training methods on this task
usually require the large quantity of labeled training data, including
text labels or phoneme labels. However, it is quiet challenging
and costly to collect high-quality parallel corpora. For the low-
resourced languageswhere the transcriptions are not available, such
speech synthesizing systems must be trained in an unsupervised
manner. The ZeroSpeech 2019 Challenge: TTS withous T, addresses
this issue and demands an end-to-end voice conversion system
with discrete latent representation of speech. Several approaches
are proposed to achieve this task while trying to strike a balance
between discretization and audio quality. The MBV method and
the VQVAE share a similar autoencoder backbone while trying
to discretize the continuous output of the encoder in a different
manner, followed by a decoding process conditioned on speaker
identity to achieve voice conversion. The differences of the two
model reflect on the information density of the discrete tokens and
the quality of generated audio segments. In this work we figure out
and improve the performances of these approaches and explore the
trade-offs.

Figure 1: The ASR-TTS autoencoder framework where MBV
are learned as discrete linguistic representations. [4]

2 RELATEDWORK
We take the MBV approach [4] as our backbone. They present an
ASR-TTS autoencoder framework with multilabel-binary vectors
to learn distinct linguistic units discovery, as shown in Fig. 1. After
then, they proposed to use additional adversarial training to gener-
ate a mask that augments the output of the TTS-Decoder for voice
conversion. To learn multilabel-binary vectors, the ASR-Encoder is
trained to map input acoustic feature sequence to a latent discrete
encoding z, which is an n-dimensional binary vector consisting of
arbitrary number of zeros and ones and defined as:

z = [e1, e2, ..., en ] ∈ Rn, ei ∈ 0, 1 (1)

In order to obtain the binarized differentiable vector z, they linear
project a continuous output vector into a Rnx2 space, where n is
the dimension of the MBV. With dual-channel projection, they
perform categorical reparameterization trick with Gumbel-Softmax
[1] on the channel, which is equivalent to asking the model to
determine whether an attribute is observed in a given input. The
whole training procedure simply uses reconstruction mechanism
with mean absolute error. Because the speaker identity is provided
to the TTS-Decoder and the discreteness z possesses, the MBV
encodings is able to learn an abstract space that is invariant to
speaker identity and only encodes the content of speech, without
using any form of linguistic supervision.

For the performance of MBV encoding, they can obtain a lower
bit rate due to less dimensions of vectors and only ones and zeros
used in the representation. However, there is a trade-off between
bit rate and voice quality. According to their voice results, the
voice with additional adversarial learning is more clear than only
using autoencoder framework. However, we observe severe artifacts
under both settings, shown below.
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• Source voice from speaker A: https://bit.ly/2Xafl7w
• Generated voice to speaker B: https://bit.ly/2FHYRsK
• Generated voice to speaker B: https://bit.ly/2JgM0yD

In this study, we focus on dealing with the problems of voice quality,
and thus pay more emphasis on the effectiveness and efficiency
of finding distinct linguistic units instead of the voice conversion
itself. Considering the trade-off of bitrate and voice quality, we aim
to obtain a better result.

3 APPROACH
Before training the ASR-TTS autoencoder, each raw speech seg-
ment is transformed into a 2D spectrogram with short-time Fourier
transform (STFT). The spectrogram could be viewed as a 2D image
and handled with computer vision strategies. To improve the quality
of the synthesized speech, we first modified the MBV method with
adversarial learning, in which the generated audio can be improved
by a discriminator. Besides, we also implement VQVAE architecture
to obtain discrete linguistic units, which had been widely used for
the discrete representation of the output of an autoencoder. The
details of the methods we introduced are shown below.

3.1 Multilabel-Binary Vector (MBV) with
Adversarial Learning

Due to the lack of constraints on MBV framework, we propose to
add adversarial loss instead of only using reconstruction loss for
the training of autoencoder. With a discriminator to distinguish
whether the reconstructed spectrogram is real or fake, we can obtain
a more human-like speech quality. The whole architecture is shown
in Fig. 2, which is similar to VAEGAN [3].

3.2 Vector Quantized Variational Autoencoder
(VQVAE)

The vector quantized variational autoencoder(VQVAE) [7], pro-
posed in 2017, is a variant of variational autoencoder(VAE) [2].
VQVAE has been proved to be a powerful VAE-like framework with
discrete latent representation, while preserving the ability to cap-
turing abstract features. Various studies have shown competitive
results against the original VAE framework [5, 7].

Here, we replace MBV architecture in [4] with the VQVAE frame-
work [7] and propose 2 versions of model architectures. In the first
version, we revise the training procedure of the VQVAE model,
where a vanilla VAE is used for training and the vector quantiza-
tion is conducted only for testing. That is, by directly feeding z
into the decoder while training, we expect the model to learn a
better representation and converge more efficiently in the early age
of training. And by quantizing the encoded representation to the
nearest embedding ec in the codebook while testing, the latent space
can be further discretized, enabling a much lower bitrate. Through
the loss functions proposed in [7], the encoded latent feature z
and the ec are pulled toward each other, effectively resulting in a
clustering of the encoded features, which indirectly discretizes the
latent representation.

For comparison, in the second version, we directly use the train-
ing procedure of VQVAE, feeding the nearest embedding ec into

Figure 2: TheMBV autoencoder frameworkwith adversarial
learning.

Figure 3: The VQVAE architecture which corresponds to our
VQVAEv2 model.

the decoder for both training and testing, and at the same time
backpropagating the gradients to the encoder.

The loss function of the VQVAE framework is composed of 3
parts, the reconstruction loss of the spectrogram, the codebook loss,
and the commitment loss, as proposed in [7]:

Loss =∥ x − Dec(Enc(x),y) ∥ + ∥ z − sд(ec )) ∥ +γ ∥ sд(z) − ec ) ∥
(2)

where x is the raw speech, y is the speaker identity, Dec(·) and
Enc(·) stands for the decoder and encoder network with the dis-
cretization mechanism included, and the function sg(·) stops the
gradients. Noticeably, Enc(·) equals to z in VQVAEv1, and equals
to ec in the VQVAEv2. We set the the size of codebook to be 64, the
dimension of codebook to be 64 ,and γ to be 0.25 for stable training.

4 EXPERIMENTS
In this section, we conduct several experiments to compare different
methods on distinct linguistic units discovery, e.g. MBV, MBV with
adversarial learning (ADV), VQVAEv1, VQVAEv2 , and continuous
latent representation.

4.1 Same-Speaker Reconstruction (Training)
Same-speaker reconstruction simply reduce the task to an discrete
autoencoding setting, which is just the case in the training of the
model. Due to the similar reconstruction mechanism among dif-
ferent autoencoders, we first simply compare their reconstruction
loss, spectrogram, and voice during training. Considering the recon-
struction loss in Fig. 4, we can find the continuous and VQVAEv1
cases have similar loss, lower than all other methods. The results
show that continuous vectors can learn latent features effectively

https://bit.ly/2Xafl7w
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Figure 4: The reconstruction loss of different methods.

Figure 5: The spectrogram generated by different methods
while training.

in the embedding space. In the other way, MBV with ADV have the
highest reconstruction loss because a trade-off may arise between
the adversarial loss and the reconstruction loss.

As shown in Fig 5, we can observe that MBV, VQVAEv1, VQ-
VAEv2 have rather blurred spectrogram while MBV with ADV
method has the clearest one. This result indicates that sharper wave-
form can be obtained with the aids of additional adversarial loss.
However, this constraint suppress the reconstruction loss, resulting
in the loss of some detailed information in the spectrogram.

The links to the voices generated by different methods are listed
in Table 1. It is apparent that the voice reconstructed from continu-
ous latent representation achieve the best quality while others still

Table 1: The same-speaker reconstructed voice by different
methods.

Methods Voice Link
Original https://bit.ly/2NnaF9R
MBV https://bit.ly/2ZVLlJx

MBV+ADV https://bit.ly/2FGJJM8
VQVAEv1 https://bit.ly/31Zw0cN
VQVAEv2 https://bit.ly/2NobHCB
Continuous https://bit.ly/2IWKcvD

Table 2: The generated speech of the voice conversion task
via different methods.

Source https://bit.ly/2XGKAGP
Methods Target Man Target Woman
MBV https://bit.ly/2XbDBBm https://bit.ly/2KRmIKC

MBV+ADV https://bit.ly/2FHdZGS https://bit.ly/2XGbGhe
VQVAEv1 https://bit.ly/2Xj7xk4 https://bit.ly/2IZ6IUH
VQVAEv2 https://bit.ly/2X8J2kI https://bit.ly/2YobgJx
Continuous https://bit.ly/2XCajA3 https://bit.ly/2J093Pf

suffers from artifacts except for the MBV with ADV. With adver-
sarial training, the synthesized speech sounds more human-like as
well as the spectrogram does. Moreover, we can find that the VQ-
VAEv1 model may generate a similar voice for different phonemes,
which possibly means that our codebook does not learn complete
representation for all phonetic combinations.

4.2 Voice Conversion
For the evaluation of voice conversion, we test the results with
unseen source speaker and known target speaker, as shown in Table
2. The target man and woman speaker can be easily distinguished
among all methods, which show the autoencoder has the ability
to encode an unseen voice into a speaker-invariant latent space
and decode into the voice of the target speaker. The linguistic and
speaker similarity between the synthesized speech and the source
speech are evaluated by our team members and simply ranked in
Table 3.

We can find an obvious trade-off between content preserva-
tion (linguistic similarity) and style transfer (speaker similarity).
However, the continuous latent representation obtains the best per-
formance compared with the discrete counterparts. We are still
working on finding a more effective discretization method which
can disentangle speech content from style information and carry
the required linguistic content efficiently, expecting to improve on
both linguistic and speaker similarity.

4.3 Latent Space Interpolation
We also generate the monophonic speech segments by feeding
multi-hot vectors into the decoder of our MVB model to explain
the latent discrete representation. In table 4 we can clearly observe
the interpolation on unique linguistic units. For example, the voice

https://bit.ly/2NnaF9R
https://bit.ly/2ZVLlJx
https://bit.ly/2FGJJM8
https://bit.ly/31Zw0cN
https://bit.ly/2NobHCB
https://bit.ly/2IWKcvD
https://bit.ly/2XGKAGP
https://bit.ly/2XbDBBm
https://bit.ly/2KRmIKC
https://bit.ly/2FHdZGS
https://bit.ly/2XGbGhe
https://bit.ly/2Xj7xk4
https://bit.ly/2IZ6IUH
https://bit.ly/2X8J2kI
https://bit.ly/2YobgJx
https://bit.ly/2XCajA3
https://bit.ly/2J093Pf
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Table 3: Trade-off

Methods Bitrate # Distinct Symbols S.S. Rank L.S. Rank
MBV 47.4 52 4 2

MBV+ADV 49 56 2 5
VQVAEv1 44.7 31 3 4
VQVAEv2 57.4 64 4 2
Continuous 138.5 16849 1 1
S.S.= Speaker similarity, L.S.= Linguistic similarity

Table 4: Latent Space Interpolation

MBV Voice Link
10000 https://bit.ly/2XMkWkd
00001 https://bit.ly/2KPJW3C
10001 https://bit.ly/2KNoCvO

generated from vector [1,0,0,0,0,1] does sound like the linear com-
bination of that from [1,0,0,0,0,0] and that from [0,0,0,0,0,1]. It is
of importance that this interpolation experiment shows that the
model definitely acquires the linear nature of voices.

4.4 Trade-off
Last, we measure the bitrate, the number of distinct symbols, and
the human evaluation of the generated voices from all methods.
From 3, we can observe that the quality of the generated voices is
generally in inverse proportional to the bitrate and the number of
distinct symbols. It is quite intuitive that the more distinct symbols
are used, the clearer the generated voices are. However, we can
easily find that our proposed model VQVAE-v1 generates better
quality of voice but using fewer distinct symbols than the MBV
method and VQVAE-v2. We suspect the reason for the better per-
formance of VQVAE-v2 to be the flexibility of training procedure.
By directly feeding z into the decoder while training, the encoder
can learn more precisely and produce high-quality latent features,
thus enhancing the ability of the codebooks to capturing the char-
acteristic of the latent features by acquiring the average of similar
latent vectors, after which the discretization can be viewed as a
simple clustering task.

5 CONCLUSION
In this work, we study, explore, reproduce and compare several
works on the TTS without T task. Without the aids of any paral-
lel label, unsupervised autoencoding scheme is generally utilized,
with various of discretization techniques applied to the latent space
in order to find an efficient discrete representation of speech. In
the experiments of the MVB methods, we address that adversarial
training is useful to reduce artifacts of the generated speech but
hurts the reconstruction quality and thus the linguistic information.
We also show that the interpolation of the latent multi-hot labels
produce meaningful results, indicating that in spite of the discrete-
ness, the encoded vectors still possess the linear nature of voice. In
the VQVAE experiments, we successfully improve the performance
by force-feeding the continuous latent representation, which is not
yet quantized, into the decoder network while training. In the eye

of the voice conversion task, we observe a trade-off between the
linguistic and speaker similarity, which is an inevitable result of
such autoencoding approaches. In the future, we aim to develop a
more clever autoencoding models specializing at such TTS with-
out T task based on those we have studied, hope to surpass the
performances of the existing ones.
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